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HIGH TEMPERATURE PROTECTIVE 

COATINGS FOR REFRACTORY METALS 

J. Rexer 

I. INTRODUCTION 

Under Contract NASw- 1030, a preliminary investigation was con- 
ducted on the use of i r idium as a high temperature oxidation protective coating 

for tantalum, niobium, molybdenum, and tungsten. The resu l t s  of that effort, 

summarized in  the Final Report for that program, emphasized the high poten- 

tial of ir idium as an oxidation protective coating for refractory metals,  

r e sea rch  performed under the present program, Contract No. NASw-1405, is 

a continuation of the work initiated under NASA Contract No. NASw-1030, 

objectives of the present  program were (1) to develop procedures for applying 

protective coatings of ir idium on refractory metals,  with special emphasis 

directed towards improving the fused sal t  electrodeposition of iridium, (2)  to 

study the r a t e  of growth of the reaction zones formed between iridium and 

some of the refractory metals,  (3)  to study the changes in thickness of ir idium 

coatings on some of the refractory metals due to interdiffusion and interme- 

tallic compound formation, and (4) to examine microscopically with a microbend 

tes ter  the mechanical behavior of ir idium coated and heat treated specimens, 

The 

The 

The resul ts  of the program conducted under Contract No. NASw-1405 

a r e  presented in  this report .  
._ 

11. SUMMARY 

An apparatus was designed and constructed to improve the electro-  
deposition of i r idium on some of the refractory metals.  Removing electrolyte 

contaminants originating f rom the atmosphere and f rom the alundum crucible 

permitted the consistent electrodeposition of coherent and adherent ir idium 

deposits of any desired thickness on molybdenum and tungsten. 

niobium were chemically too reactive.with the molten electrolyte to be consist-  

ently coated with iridium. 

substrate metals followed by a n  iridium overlay was developed for these metals. 

Tantalum and 

A dual coating consisting of a nickel s t r ike on the 



The amount of the decrease in thickness of an  iridium coating on 

molybdenum, tungsten, and niobium, due to intermetallic compound formations, 

was determined. F r o m  these data, the life expectancy of the coating a t  elevated 

temperatures can be estimated. Extrapolation of the data, assuming solid-state 

diffusion controlled reactions, shows that a 5 mil thick i r idium coating a t  1700°C 

will last indefinitely on tungsten, for a t  least  700 hours on niobium, and for a t  

least  600 hours  on molybdenum. Similarly, the same coating at 1900°C wil l las t  

at  least  300 hours,  and 130 hours,  respectively on tungsten and molybdenum. 

In contact with niobium, the ir idium coating should las t  a t  least  200 hours a t  

1780°C. 

Examination with the microbend tes ter  of p re s su re  bonded composites, 
in both the as-formed and annealed conditions, shows that cracks initiate on the 

side of maximum tension (the outer i r idium surface) and propagate towards the 

coating-substrate interface, 

tungs ten sheet samples,  whereas niobium-based composites were  ductile. 

Molybdenum-based composites failed in  a brit t le manner at bend angles of 

approximately 45 degrees,  and annealed molybdenum was plastically deformed 

through a bend angle of 90 degrees.  

easily during deformation, even when a significantly thick reaction zone is 

present between the coating and the substrate metals. 

Tungsten-based composites were as brit t le as 

A well-bonded composite will notdelaminate 

111. EXPERIMENTAL 

A .  Materials 

High purity ir idium was obtained f rom Engelhard Industries, Incorpora- 

ted. Sheet iridium, (0 .  005-inch-thick) was used for the diffusion and mechanical 

behavior experiments, and 0. 040 -inch-thick sheet i r idium was used for e lectro-  

plating. 

Tantalum and niobium sheets (0.020-inch-thick) were purchased f r o m  the 
Union Carbide Corporation, Materials Systems Division. Molybdenum and tung- 

sten sheets (0, 020-inch-thick) were purchased f r o m  the Fansteel  Metallurgical 

Corporation. 

The sodium and potassium cyanides were high purity analytical reagent 
grades. 

-2 - 



B. Sample Preparat ion 

Iridium-coated samples were prepared either by electrodeposition f r o m  
a fused-salt electrolyte o r  by p res su re  bonding. Coherent and adherent e lectro-  

plated iridium deposits could not be obtained in some of the systems under study, 

To provide assurance that a "representative" coating substrate sys tem would be 
examined, we prepared all samples used for the diffusion and mechanical be-  

havior studies by p res su re  bonding techniques. 

1. Fused Salt Electroplating 

The fused-salt sys tem developed by Withers and Ritt"), and used under 

Contract NASw-1030('), was also used in the present program. The electrolytic 

cell  previously used was modified to overcome plating difficulties attributed to 

atmospheric contamination of both the hot substrate metals and the molten sal ts ,  

A schematic diagram of the apparatus is shown in Figure 1. 

(70 w/o sodium cyanide and 30 w/o potassium cyanide) was contained in  a n  ATJ 

graphite crucible (2-3/4 inches outside diameter by 5 inches high with 3/8-inch 

thick walls) ra ther  than in the alumina crucible previously used. 

alumina was placed as insulation between the two graphite crucibles and between 

the steel  container and the furnace. The apparatus consisted of three chambers.  

The lower chamber contained the molten sal t ,  the temperature of which was 

determined by means of a chromel-alumel thermocouple positioned between the 

two graphite crucibles. 

to the gate valve, was heated by a separate  power supply; this chamber was 

used to preheat the anode and cathode before they were inserted into the molten 

salt .  No physical ba r r i e r  separated the lower and middle chambers which were 

kept under an argon atmosphere. 

sulfuric acid before i t  was admitted into the cell,  and the argon p res su re  within 

the cell  was kept slightly above ambient by means of a gas exhaust bubbler. The 

upper chamber extended f rom the gate valve to the plexiglass l id;  i t s  function 

was to minimize oxidation and moisture  pickup in the lower chamber while e lec-  

trodes were  removed f rom or  inserted into the cell.  

the upper chamber could be flushed with argon while a positive argon p res su re  

was maintained in  the isolated lower chambers.  

The molten sal t  

Granulated 

The middle chamber,  extending f rom the salt  bath up 

The argon was bubbled through concentrated 

By means of the gate valve,  

-3 - 
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The anodes consisted of s t r ips  of ir idium approximately 31'8 inch-wide 

by 0.040-inch-thick and up to 6 inches in length. 

(0. 020-inch-thick) of the refractory metals approximately one inch square. 

Both the anodes and cathodes were held in position in the molten sal t  bath by 

nickel lead-in rods inserted through the plexiglass l id .  The iridium anodes 

were attached to the nickel lead-in rods  by graphite fasteners.  Iridium wires  

( 0 .  020 inch in diameter) spot welded to the refractory metal  cathodes and to 

small s t r ips  of stainless s teel  were a l so  attached to the nickel lead-in rods by 

graphite fasteners.  Rubber "0" rings were  used as air-t ight seals between the 

plexiglass lid and the cel l  and between the lid and the nickel lead-in rods,  

The cathodes were sheets 

Substrate preparation pr ior  to electroplating was found to be a very 
important factor in  obtaining 

of surface preparations were tried ( see  discussion in  the Final Report of 

Contract No. NASw-1030('! As a resul t  of these investigations, a standard pro-  

cedure for the surface preparation of substrate metals was devised, consisting 

of the following steps: (1)  polish the substrate  metal  surface with wet abrasion 

papers through 600 gr i t ,  ( 2 )  sc rub  with hot Alconox solution, (3 )  r inse  with d i s -  

tilled water, (4) dip into a dilute sulfuric acid solution (7-8 percent) to insure 

neutralization of any residual basic solution, (5 )  wash again with distilled water,  

and (6) wash with 95 percent ethyl alcohol. The specimens were a i r  dried before 

being placed into the fused sal t  electroplating bath. 

coherent and adherent ir idium coatings. A variety 

The procedure for preparing the electrolyte consisted of sealing the 

powdered cyanide mixture in the electroplating apparatus and thoroughly flush- 

ing with argon before heating to approximately 600°C. The salt  mixture melts a t  

approximately 500°C.  The bath was charged with i r idium and some of the cation 

impurities were removed by passing a direct  current  (cathode current  density 

between 10 and 20 amp/ft.2) through i r idium anodes and spectroscopically pure 

graphite cathode rods for several days. A solid state power source capable of 

supplying a direct  current  of 10 to 1000 ma was used. 

ium electrodes were used as both anode and cathode to hasten charging of the 

molten sal ts  with iridium. The use of alternating current  to charge the molten 

sa l t s  with iridium, as recommended by Withers and Ritt(2), was not necessary,  

since the anode efficiency always tended to be much higher than the cathode eff i -  

ciency. After bright metallic ir idium electrodeposits were consistenbly obtained 

on the graphite rods,  the electrolyte was considered sufficiently conditioned for 

electroplating onto the refractory metals. 

F r o m  time to time, i r i d -  

-5  - 



2. Pressure Bonding 

Samples obtained by pressure bonding sheet iridium (0.005 -inch thick) 
under vacuum to the refractory metals were used for the diffusion ahd mechan- 

ical behavior studies. A schematic diagram of the vacuum hot press is given 
in Figure 2. 

Corporation, Grade ATJ stock. 

vacuum tight by means of a flexible metal bellows and "0" ring seal attached 

to the upper plate. 

each metallographically polished on one side. After the two sheets of metal 

were carefully washed with 95 percent ethyl alcohol, they were positioned in 

the die (polished surfaces touching), sandwiched between two thin sheets of 

"Grafoil". * With the upper graphite plunger inserted, the entire assembly was 
placed into the vacuum apparatus. The system was evacuated by means of a 
mechanical pump, and pressure was applied to  the specimens before heating. 

Table I shows the conditions under which diffusion couples for  the different 

systems were prepared; these conditions resulted in good bonding with no 

observable intermetallic compound formation. 
were sectioned with a water-cooled abrasive wheel and subsequently used for 

either the diffusion studies or for examination of the mechanical behavior of 

the composites. 

The die and plungers were machined from Union Carbide 

The water -cooled steel plunger was  made 

Sheet iridium and the refractory metal substrates were 

The hot -pres sed composites 

TABLE I 

PRESSURE BONDING CONDITIONS 

System Temperature Pressure Time Q Temp. 

Mo -1r 1200°C 1500 psi 1 - 1/4 hours 

W -1r 1200" c 1700 psi  2 - 1 /4 hours 

Nb -1r looooc 1360 psi  1 hour 

* "Grafoil" is a registered trademark of Union Carbide Corporation. 

-6 - 
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C, Sample Evaluation 

1. Heat-Treating Apparatus 

A schematic diagram of the apparatus used for annealing samples fo r  
the diffusion and mechanical behavior studies is shown in Figure 3. 

specimens, consisting of sectioned pieces of the p re s su re  bonded composites, 

The 

were contained in a tungsten crucible and heated inductively by means of an  

electromagnetic flux concentrator which efficiently links the field, o r  energy, 

of a la rge  induction coil to small samples,  

from copper, contains a slot which eliminates circumferential electrical  con- 

tinuity, 

en te rs  through stainless s teel  leads which a l so  serve to support the assembly. 

The power source used to energize the concentrator is a 25 kw output Therrnonic 

Electronic Induction Generator operating at  a frequency of approximately 

400 kilocycles. 

urable core  reactor .  

The concentrator, fabricated 

The central  portion of the concentrator is water cooled, The water 

The output of the generator is controlled by means of a sa t -  

\ 

A Pyrex  glass  mantle f i t s  closely over the concentrator and se rves  
both to insulate electrically the induction coil f rom the concentrator and to 

provide a controlled atmosphere or ,  i f  desired,  a vacuum. Associated vacuum 

facil i t ies were  attached to the bottom of the glass mantle and p res su res  of 

2 x l oc6  t o r r  could be achieved consistently with the equipment. 

glass mantle is sealed by rubber 11011 rings in  a cap which is provided with a 

sight glass. 

The top of the 

The temperature of the tuqgsten crucible is automatically controlled 
f rom the output of a w-570 Re/W-2670 Re thermocouple by a Leeds & Northrup 

Speedomax AZAR recording controller and a CAT control unit. 

temperature control was initially attempted using a Honeywell thermopile 

connected to the recorder  and controller. 

calibrating the output of the thermopile a s  a function of black body temperature 

since the thermopile had to be displaced while samples were loaded and un- 

loaded f r o m  the tungsten crucible. Replacing the thermopile with a thermo- 

couple located inside of the tungsten crucible simplified loading and unloading 

samples in  the heating chamber, made the obtaining of preselected temperatures  

Automatic 

Attempts were  not successful in  

- 8 -  
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easier,and permitted continuous monitoring of the sample temperature with a 
Pyro-Micro -Optical Pyrometer  without disturbing the automatic temperature 

control system. 

Pt/Pt-10% Rh thermocouple. 

as a function of black body temperature.  

this thermocouple changed with time, possibly due to contamination, and i t  

was removed. 

The f i r s t  thermocouple used for temperature control was a 

The emf of this thermocouple was determined 

However, the Characteristics of 

The calibration curves of the w-570 Re/W-26To Re thermocouples, 
positioned inside of the tungsten crucible, did not change with usage. 

thermocouples were  used throughout the project, and each was calibrated 

against a Pyro-Micro-Optical pyrometer. The pyrometer was calibrated by 

means of a National Bureau of Standards calibrated tungsten ribbon lamp and 

a standard a r c  with sectored disks as radiation sources.  

made for glass absorption. 

were similar to the one shown in Figure 4. 

average of five determinations at each thermocouple output setting. 

Several 

Corrections were 

The calibration curves for all thermocouples 

The temperature plotted is the 

Initial attempts were  unsuccessful a t  automatically controlling the 
temperature of a graphite crucible, 

resulted in overcontrol, indicating that the specific heat of the crucible was 

insufficient. The problems encountered with the graphite crucible were not 

encountered when tungsten crucibles were  used. 

throughout the program were  prepared a t  the Parma Technical Center by 

electroplating tungsten on a copper mandrel. The electroforming of coherent 

tungsten f r o m  molten fluoride electrolytes has  been described by Senderoff 

and Mellors(3), The tungsten crucibles were 7/8-inch in inside diameter,  

approximately 1-1/4 inches deep, and had 1/32-inch wall thicknesses. An off- 

center hole was machined into the bottom to admit the thermocouple, and the 

l id  had a 1 /  16-inch diameter sight hole in the center.  

distribution within the tungsten crucible was established at several  temperatures 

through the use of a crucible lid containing five 1/16-inch diameter holes. In 

the accompanying table (Table 11), hole number one was located in the center 

of the lid and the remaining four holes were  uniformly distributed between the 

inner crucible surface and the center hole. No temperature gradients which 

could be determined by the optical pyrometer were observed. 

Deviations f rom a temperature setpoint 

The tungsten crucibles used 

The radial temperature  

-10- 
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TABLE 11 

TEMPERATURE GRADIENTS WITHIN THE TUNGSTEN CRUCIBLE 

Tem .a t  Temp. at Temp. at Temp. at Temp. at Ave. Temp. 
* 

Hole #p1, "C Hole #2, "C Hole #3, "C Hole #, " C  Hole 8, " c  "C 

1288 f 10 1278 f 10 1278 f 10 1288 f 10 1280 f 10 1282 

1497 f 10 1491 f 10 1500 f 10 1503 f 10 1497 f 10 1498 

1683 f 12 1675 f 12 1700 f 12 1696 f 12 1689 f 12 1689 

1900 f 15 1885 f 15 1870 f 15 1900 f 15 1879 f 15 1887 

* Each recorded temperature is the average of 10 trials. 

Specimens were heated from room temperature to any of the desired 
After the annealing temperatures within a maximum time of 1-1/2 minutes. 

samples were annealed for the predetermined time at temperature, the induc- 

tion generator was turned off and the samples were furnace cooled under 

vacuum. 

approximately 600°C in  less than f i v e  minutes. So that the substrate metals 

would not oxidize, the specimens were kept under a vacuum f o r  at least 1/2- 

hour after the induction generator w a s  turned off. Argon was admitted into the 

closed system before the specimen was removed from the heating chamber. 

The tungsten crucible cooled from the annealing temperatures.to 

2. Microbend Tester 

So that we might obtain a better understanding of failure modes than 
can be gained from standard bend tests and also. to conserve materia1,we con- 

structed a fixture to allow direct observation of the entire s t ress  gradient a s  

a bending s t ress  was applied to a coating-substrate system. The basic design 

of the microbend tester follows that proposed by Flinn and Trojan(4). The 

microbend tester permitted microscopic observation of the side of the beam 
while a bending s t ress  was applied to small specimens measuring approxi- 

mately l / 8  inch x 0.025 inch x 1 inch. Three-point loading was accomplished 

through two moveable outer loading pins attached by means of a ball joint to 

the plunger of a spring balance. 
1/8 lb. and was equipped with a marker to measure the maximum applied load. 

The spring balance'was calibrated to within 

-12- 



The entire s t r e s s  gradient, f r o m  maximum tension on the outer coating edge 
to maximum compression on the substrate surface butting against the station- 

a r y  center loading pin could be observed. Figure 5 shows the microbend tes ter  

mounted on a Zeiss  microscope and the attached spring balance. 

The performance of the microbend tes ter  was evaluated by testipg 
twelve samples of Unipn Carbide Corporation Grade ATJ graphite on the micro-  

bend tes ter  and testing eleven samples,  machined f rom the same large block, 

by using a standard three-point loading technique. 

Table 111. 

tes ter ,  5500 psi ,  compared well with the average strength of 6000 psi  obtained 

by the standard test. The maximum deviation f rom the average strength for  

samples tested with the microbend tes ter  was f 1000 psi ,  whereas on the 

standard three -point load test  i t  was f 2200 psi. The difference between the two 

tes t  values may be caused pr imari ly  by differences in instrumentation, In the 

standard tes t ,  the applied load can only be determined to within f one pound; 

the spring balance of the microbend tes ter  can be read to within f 1 /8  pound, 

The resul ts  a r e  given in 

The average flexural strength determined by using the microbend 

The specimens examined with the microbend tes ter  were obtained f r o m  
the 'as -received' sheet metal  and f rom hot -pressed iridium-coated substrates.  

Strips,  approximately 3/4-inch to one inch long and 1/8-inch wide, of the ,ma-  

ter ia l  to be tested were  cut with a water-cooled abrasive wheel. Some of the 

composites were heat treated to develop a reaction zone. One of the side-of- 

beam surfaces  of each of the sectioned pieces was metallograpbically polished 

before testing. 

s t ra te  metals) one surface was polished and then etched to reveal the grain 

structure.  Iridium-coated specimens were not etched, since etching to reveal  

the ir idium miqsostructure caused severe chemical attack to both the sub- 

s t ra te  metal, and the interface between the ir idium coating and the substrate 

metal. 

Where possible, (such as with some of the'as -received'sub- 

-13- 



rn 
0 

c 
0 
Tu 
a, 
c 
I 

U 

5 
k 
a, 
rn 
a, 
b 
13 c 
a, 

k 
V 

42 

% 

2 
W 
0 
c a 
(d 
k 
M 
0 
0 c 

pc 

U 

- 1 4 -  



l u o N o ~ o m r n o o 9  o o o o o o m m o o m  
4 4 4 d d d 4 0 0 A d O  

-15- 



3.  Visual Examination 

A l l  coating subs t ra te  composites,  r ega rd le s s  of the method of prepa-  

ration, were  examined for  external  flaws with the unaided eye and with a low- 

powered microscope. Specimens which could be sectioned, such as those used 

fo r  the diffusion and mechanical behavior studies and some  of the electroplated 

samples ,  were  metallographically poli shed and microscopically examined. 

Ef for t s  were  made to revea l  the s t ruc tura l  detai ls  in molybdenum- 
i r id ium and tungsten-iridium composites. 

polished with 600 gr i t  paper  and alundum powder, were  given a final polish 

with one-micron diamond pas te  on a Texmet polishing cloth. 

composites were  f i r s t  electrolytically etched for  approximately five seconds, 

anodically, a t  a DC potential of two volts in  a solution containing 300 ml ofwater  

and 30 ml of sodium hydroxide. This  t reatment  color t ints the molybdenum-rich 

intermediate phase and preferentially a t tacks the molybdenum grain boundaries. 

After the sample was washed in  water ,  it  was electrolytically etched fo r  

approximately five seconds,  anodically, a t  a DC potential of two volts i n  a 

solution of 150 ml of water  and 25 ml of phosphoric acid. 

provides some color contrast  to the molybdenum gra in  surface without severely 

attacking the grain boundaries,  neither etchant r eac t s  noticeably with ir idium. 

The tungsten composites were  anodically etched for  approximately ten seconds 

a t  a DC potential of four volts in  a solution containing 300 ml of water ,  5 ml of 

ammonium hydroxide, 3 gm of sodium hydroxide, and 2 g m  of chromic acid. 

The etchant color tinted the tungsten-rich intermediate phase blue, and the 

i r id ium-r ich  phase tan to grayish tan. 

Specimens mounted in  epoxy resin, 

The molybdenum 

The second etchant 

IV. RESULTS AND DISCUSSION 

A. Coating Methods 

1. P r e s s u r e  Bonding 

Of the two coating methods used in this investigation, the high temper-  

a ture  p r e s s u r e  bonding method was the only one which consistently produced 

small sheets  of the r e f r ac to ry  metals  coherently and adherently coated with 

uniformly thick (approximately 0.005 inch) ir idium. In the initial p r e s s u r e  

bonding experiments,  good adherence was achieved in  all sys tems,  partially 
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because of the formation of a reaction zone between the substrate metal  and 

the ir idium coating. 

which were la ter  to be annealed for the diffusion experiments,  the processing 

parameters  (temperature,  p ressure ,  and t ime-at-temperature) were  adjusted 

Since a reaction zone was not desired for specimens 

so that good adherence was achieved without the formation of an  observable 

reaction zone. The presence or  absence of a reaction zone w a s  determined 

by metallographic examination of sections of the as -formed composites a t  a 

magnification of 500X. The processing parameters  used to obtain coating 

adherence without reaction zone formation for  each of the systems studied 
a r e  listed in  Table I. 

bond probably causes  the good adherence achieved. 

Figure 6 is typical of that obtained for a l l  of the sys tems studied. 

Sufficient t ime-at- temperature  to effect a diffusion 

The photomicrograph in 

In the previous investigation under Contract No. NASw- 1030, (1) 

several  attempts were made to roll bond sheet ir idium to sheet tantalum and 

niobium; during the present program, no specimens were  prepared by rol l  

bonding. 

promising for coating la rge  sheets of the refractory metals with ir idium.The 

bond obtained between i r idium and the refractory metals i s  largely dependent 

upon the kinetics of the reaction occurring. In pressure  bonding, the time a t  

which the metal  sheets a r e  held at  the proper  temperature  and p res su re  is an 

easily controllable variable. 

and the ir idium coating during rol l  bonding is very short ,  g rea te r  emphasis 

must be placed on temperature  and p res su re  to obtain a n  adherent diffusion 

bond. 

The method is mentioned briefly he re  because i t  is extremely 

Since the contact t ime of the substrate metal  

2. Fused -Salt Electrodeposition of Iridium 

The previous study'l'showed that improper  substrate surface prepara-  

tion pr ior  to electroplating invariably resulted in an i r regular  coating which 

was often nonadherent. This inability to produce adherent ir idium coatings on 

the refractory metals with any degree of consistency necessitated trying a 

variety of surface preparations. The cleaning processes  evaluated were  out- 

lined in the final report  for Contract No. NASw-1030('). A method of surface 

preparation was developed and standardized for use on al l  of the substrate 

metals,  and this method, outlined in the experimental  section of this report ,  

was used throughout the present program. 
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Figure 6. Photomicrograph of P r e s s u r e  Bonded 
Sample HP-3h4, 1OOOX. 

N - 1  1665 

The data obtained under Contract NASw - I030 were insufficient to 
distinguish between electrolyte deterioration due to (1) a gradual buildup of 

impurit ies to a cri t ical  level that prohibited the electrodeposition of coherent 

ir idium deposits o r  (2)  the thermodynamic instability (i. e . ,  too large a d i s -  

sociation constant) of the i r idium complex anion giving r i s e  to the noncoherent 

deposits. Thermodynamic instability may not be a major problem, since i t  

can sometimes be overcome by continuous electrolysis. 

molten salt  with impurit ies such as oxygen o r  moisture can have several  

deleterious effects. If ir idium must be maintained in a low valency s t a t e , .  

Contamination of the 
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contaminants that may readily oxidize the ir idium anion to a higher valency 

state must be eliminated. 

during electrolysis [ including portions of electrolytes which no longer pro-  

vided coherent deposits] indicated that ir idium must be maintained in a low 

valency s ta te  to produce coherent deposits. Consequently, the new electro-  

plating cell  was designed and constructed to minimize atmospheric  

contamination of the electrolyte. In addition, the previously used alumina 

crucible was replaced by a graphite crucible to eliminate contamination due 

to the presence of aluminum oxide. 

oxidation of the complex iridium anion. If the anode-to-cathode a r e a  is varied, 

this source of oxidation may readily be eliminated. In addition to directly 

affecting the valence s ta te  of the ir idium anion, the presence of moisture  or  

oxygen in the hot electrolyte can oxidize the substrate metal  surface and p r e -  

vent a coherent ir idium deposit f rom adhering. 

cell  was designed to  minimize atmospheric  contamination, the harmful effects 

of chemical reactions occurring between the hot substrate  metals and the hot 

electrolyte [ o r  impurit ies in the electrolyte] can further be minimized by 

depositing a thin s t r ike coat of ir idium a s  rapidly as possible on the substrate 

surface. Previously, the elctrodes could not be preheated in an iner t  a tmos-  

phere before being immersed  into the molten electrolyte. Consequently, the 

electrolyte could solidify around the cold electrodes,  chemically react  with 

the cathode, and then melt a s  the temperature  of the electrodes approached 

that of the electrolyte. The heat-affected zone of the new cell  was extended 

sufficiently above the molten electrolyte to allow preheating of the electrode8 

to temperatures  near  the melting point of the electrolyte. 

Chemical analysis of portions of the electrolyte 

Insufficient anode a r e a  may also lead to 

Although the new electroplating 

The f i r s t  molten electrolyte used in the new apparatus was in operation 
for one month; ten coherent ir idium-coated molybdenum and s ix  tungsten 

specimens were  produced. 

(electroplating was not continued over a weekend and r a re ly  overnight) and 

did not noticeably deteriorate.  

This electrolyte was not in continuous operation 

This fact suggests that the complex i r id ium 

anion responsible for producing the coherent deposits is thermodynamically 

stable. Previous fai lures  to produce coherent i r idium coatings appear to have been 

caused pr imari ly  by oxidation and atmospheric  contamination of the molten salts .  
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This detrimental  effect of a tmospheric  contaminants was demonstrated when 
an argon inlet line broke over a weekend admitting air to the normally closed 

system, resulting in electrolyte deterioration and, subsequently, incoherent 

deposits. 

moisture content, continuous flushing with argon through the enclosed system, 

and intermittent electroplating in the manner used originally to charge the 

electrolyte with i r idium might eventually lower the moisture  content to a leve l  

where the electrolyte would once again produce coherent coatings. However, 

repeated attempts over severa l  weeks at rejuvenating the contaminated elec - 
trolyte failed, and the electrolyte was discarded. Apparently, a tmospheric  

contaminants oxidize the iridium anion needed for coherent deposits to a high 

valency state. The use of an electroplating cell  which could be maintained a t  

an argon p res su re  greater  than ambient minimized both the atmospheric  con- 

tamination of the electrolyte and oxidation of the hot substrate metal. 

If the electrolyte deterioration was caused by an increase in the 

A second charged electrolyte which was in operation for l e s s  than one 
week provided two coherently coated tungsten samples.  Unfortunately, the 

ir idium support wires  of a tungsten specimen broke while the sample was being 

placed into the electrolyte, and this electrolyte was discarded. 

incident occurred with a third electrolyte after i t  had produced coherent ir idium 

coatings on two tungsten and s ix  niobium samples.  Tungsten and molybdenum 

could be electroplated consistently with dense, coherent ir idium deposits, but 

efforts to consistently coat niobium and tantalum were  not successful. Fai lure  

to obtain coherent and adherent ir idium deposits on niobium and tantalum can-  

not be attributed to electrolyte contamination, since the operation of each 

electrolyte was intermittently checked by electroplating onto a molybdenum 

substrate.  

niobium and tantalum reac t  with the molten electrolyte. One method of p r e -  

venting this chemical reaction was to physically separate  the reacting 

constituents by means of a dense electrically conductive material .  After i t  was 

determined that a coherent and adherent coating of i r idium could readily be 

plated onto nickel rods,  severa l  niobium and tantalum sheet samples  were 

electroplated with l e s s  than 0. 1 mil-thick nickel f r o m  a commercially availa- 

ble nickel sulfamate electrolyte. Ir idium was then deposited f rom the molten 

A similar  

The plating difficulties s e e m  to s t em f rom the ease with which 
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cyanide electrolyte  onto the nickel-coated substrate .  Microscopic examination 

of metallographically polished sections of the dual-coated samples  showed that 

both coatings were  dense and apparently well  bonded. 

The successful development of a dual coating for  niobium and tantalum 

made it possible to  consistently electroplate all of the subs t ra te  metals  with 

dense coherent i r id ium deposits. 

with the plating itself but with the i r id ium e lec t r ica l  lead wi re s  which were  

spot welded to the subs t ra te  metals ,  At t imes,  the welding operation made 

the lead w i r e s  very br i t t le  o r  a poor bond was obtained, and breakage occurred 

p r io r  to o r  during electroplating. 
heat-affected zone of the weld sometimes resulted in  pin holes in a n  otherwise 

dense and coherent i r id ium coating. 

, 

The major  difficulty that remained was not 

In addition, res idual  impuri t ies  around the 

B. Diffusion Studies 

The life expectancy of i r idium coatings on re f rac tory  meta ls  is pr inci-  
pally determined by two factors :  l o s s  of i r idium through I )  oxidation and 2) 

intermetall ic compound formation. The r a t e  of oxidation of i r id ium was 

previously determined under a program ( 5 ) d e ~ i g n e d  to evaluate the use  of 

i r id ium as a n  oxidation-protective b a r r i e r  for  graphite. 

studies were  ca r r i ed  out to  determine the i r id ium los s  due to intermetal l ic  

compound formation. Initially, a t tempts  were made to determine chemical  

diffusivities and the r a t e s  of growth of individual reaction zones; however, 

i r r egu la r  react ion zone phase boundaries were  observed in annealed diffusion 

couples, and etching the annealed specimens to  microscopically revea l  these 

phase boundaries was difficult. 

metall ic compound formation was,  therefore ,  determined directly f r o m  

measurements  of the thickness of i r id ium remaining af te r  annealing r a the r  

than f rom measurements  of changes in the thickness of the total react ion zone. 

The present  diffusion 

The amount of i r id ium depleted through in te r  - 

1. The Molybdenum-Iridium System 

Initially, a g rea t  deal  of effort  was expended in  determining precisely 
the r a t e  of growth of the react ion zone for  the molybdenum-iridium system. 
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Sections of p re s su re  -bonded samples were metallographically polished and 
etched, and other sections were heat treated. The resul ts  are given in Table IV. 

No evidence of intermetall ic compound formation was observed in any of the 

pressure  -bonded specimens, and i r idium and molybdenum appeared to be well 

bonded, Figure 6,  a photomicrograph of a section of pressure-bonded sample 

HP-3M, is typical of the pressure-bonded samples for all of the systems 

studied; it shows the substrate metal grains,  no grain s t ructure  in the i r i d i u m  

phase, and no observable reaction zone, 

Partial delamination was observed in several  samples annealed a t  
temperatures of 1530°C and higher. Par t icular ly  noteworthy were  samples,  

HP-4M-1710 and HP-4M-1710-2. After the sample HP-4M-1710-lwasannealed 

for one hour, a section, HP-4M-1710-2, was annealed for  one additional hour 

a t  the same temperature,  No fur ther  increased reaction zone width was observed, 

There a r e  two possible explanations for  this result .  Either the process  of sec-  

tioning HP-4M-1710-1 produced a f rac ture ,  or  the thermal  shock of heating 

rapidly to the annealing temperature produced a break in the reaction zone. 

A double etch method, described in the experimental section of this 
report ,  was developed to lightly color -tint the molybdenum grains without 

severely attacking the grain boundaries, Neither etchant reacted with the 

i r idium-rich intermediate phase sufficiently to reveal c lear ly  the phase bounda- 

r i e s  without severely attacking other phases of the composite. 

contrast between phases was obtained so  that the interfacial boundaries could 

be detected under the microscope, bvt a fur ther  increase in contrast  would be 

desirable for photographic purposes. 

bireflectant under polarized light, 

Sufficlent 

The i r idium-rich intermediate phase was 

Figures  7, 8, and 9 are photomicrographs of samples HP-1M-1300-5, 

HP-3M-1530-2, and HP-4M-1710-4, respectively, taken at a magnification of 

1OOOX. In these photomicrographs, the molybdenum grains,  the molybdenum- 

r i ch  intermediate phase, and the light (void of s t ructural  details) i r idium phase 

can readily be seen. Structural  details a r e  not observable in  the i r idium-rich 

intermediate phase, and very l i t t le contrast  is present between this phase and 

the iridium, In addition, Figures  7 and 8 indicate that i r idium may be p re fe r -  

entially diffusing along the molybdenum grain boundaries. 
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TABLE IV 

DIFFUSION DATA FOR THE MOLYBDENUM-IRIDIUM SYSTEM 

Optical Pyrometer  Thermocouple Heat Treat Total  Reaction 
Sample NO. Temperature C mV Time, hrs. Zone Width, ~1 

HP- lM* 
HP-2M* 
HP- 3M* 
HP-dM* 
HP- 5M* 

HP- 1M-1300-1 
HP-1M-1300-2 
HP-1M-1300-3 
HP- 1M- 1300-4 
HP- lM-1300-5 

HP-3M-1530-1 
HP- 3M - 1 5 30-2 
HP- 3M- 1530- 3 
HP- 3M- 1530-4 
HP- 3M - 1530-5 

HP-4M -17 10- 1 
HP-4M-17 10-2 
HP-2M-1710-3 
HP-4M- 17 10 -4 

HP-5M-1900-1 
HP-4M-1900-2 

1292 i 10 
1292 f 10 
1 2 9 2 f  10 
1292 f 10 
1292 f 10 

1 5 2 7 ~  10 
1 5 2 7 f  10 
1 5 2 7 i  10 
1527 f 10 
1527& 10 

1895k 10 
1895f  10 

22.65 0.01 
22.65 f 0.01 
22.65 i 0.01 
22.65 i 0. 01 
22.65 f 0. 01 

26. 58 f 0. 01 
26. 58 f 0. 01 
26.58 f 0. 01 
26.58 f 0. 01 
26. 58 0, 01 

29.15 f 0. 03 
29.15 f 0.03 
29.15 i 0. 03 
29.15 f 0.03 

31.94 f 0. 02 
31. 94 f 0. 02 

1. 0 
2.0 
4. 0 
8. 0 

16. 0 

1. 0 
2. 0 
4. 0 
8.4 

16.2 

1. 0 
2. 0 
4. 0 
8. 0 

0.4 
2. 0 

* ** Sections of the pressure-bonded samples. 
Delamination before o r  during heating or annealing. 

4. 2 

7. 0 
9. 1 

11. 2 

- - -** 

14. 0 
19. 6 
25. 2 

(16. 8)** 
(28. O)** 

16. 8 
(16. 8)** 
(24, O)** 
(30. 8)** 

8, 4 
(19. 6)** 
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Figure 7. Photomicrograph of Annealed Sample 
HP-122-1300-5, IOOOX. 

N -  11666 
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Figure 8. Photomicrograph of Annealed Sample 
HP-3PA-I 530-1, 1 O O O X .  

N - I  1667 
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Figure 9. Photomicrograph of Annealed Sample 
HP-4M-17 10 -4. 

N- 1 1668 
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In the photomicrograph of Figure 7, two intermetall ic phases  s e e m  to 

be present. Giessen, Jaehnigen, and Grant(') indicated that the three phases  

Mo31r, MoIr, and MoIr3 exist  a t  1300°C and that a t  1530°C, these phases and 

an E - phase a r e  present,  

tion reactions on cooling (i. e. , E -. Mo31r + MoIr and E+ MoIr + MoIrs). Similaely, 

at  1710"C, the phases Mo31r, E , and a M o I r S  a r e  present,  and the E -phase  

decomposes on cooling. 

The E - phase can undergo two eutectoid decomposic 

In a n  effort  to determine which, i f  any, of the features of the photo- 

micrographs were  ar t i facts ,  sections of the above samples  were examined 

with a n  electron microprobe analyzer. This work was car r ied  out a t  the 

Research  Laboratory of the Mining and Metals Division of Union Carbide 

Corporation a t  Niagara Falls, New York. 

i r idium in a polished section of Sample HP-3M. 

the ir idium (the dark  phase) and molybdenum (light phase) a r e  not discernible,  

The overall specimen image and the X-ray line scan do not reveal  any in te r -  

mediate compound formation, substantiating the findings of the photomicrograph 

in Figure 6. The electron microprobe micrographs of Figures  11 through 15 

may be compared with the photomicrograph in Figure 8, since they a r e  all of 

sample HP-3M-1530-2. 

this sample has a ra ther  wide band of reaction products, this type of analysis 

did not detect the different concentrations of ir idium in the various interme- 

tallic compounds. 
reaction zone s t ructural  details obtainable with the microprobe analyzer. No 

s t ructural  details can be observed in either the i r idium o r  molybdenum (light 

phase); however, the intermediate phases present  in the reaction zone a r e  

readily detected, including the ir idium r ich  phases  which a r e  difficult to detect 

in the photomicrograph of Figure 8. The scanning image indicates that there  

may be a s  many as five intermediate phases  in the reaction zone. Figure 13 

shows X-ray line scans for both ir idium and molybdenum in which the reaction 

zone interfaces adjacent to both the ir idium and molybdenum a r e  easily located. 

The intermetall ic phases present  in the reaction zone could not be identified. 

F igures  14 and 15 show some s t ruc tura l  details in i r idium and molybdenum, 

respectively. In addition, Figure 15 includes an iridium line scan which detected 

i r idium in the molybdenum grain boundaries but not in the grains themselves. 

Figure 10 is an X-ray  line scan fo r  

The grain s t ruc tures  within 

Figure 11 shows an X-ray  scan for iridium. Although 

The electron scanning image of Figure 12 shows the 
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Figure 10. Electron Wicroprobe X-ray Line Scan for  Iridium 
in  Sample HP-3b/., ! ?.50X. 

N-11669 

Figure 11, Electron Microprobe X-ray Scan for  Iridium in  
Sample HP-3h -1530-2, 1250X. 

N-11670 
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"- 

Figure 12 .  Electron IV icroprobe Electron §canning of Sample 

N -  1 167 1 H P - 3 N  -1530-2, 1250. 

Figure 13. Electron E\/-icroprobe Iridium and !A/ olybdenum X-ray 
Line Scans in Sample HP-3W-1530-2 ,  1250X. 

N-11672 
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F i g u r e  14. E:lectron Mic roprobe  E l e c t r o n  Scanning Image  f o r  
I r i d i u m  S t r u c t u r a l  C e t a i l s  i n  Sample  HP-3M -1530-2, 
125OX. N-11673 

F i g u r e  15. E l e c t r o n  Mic roprobe  E l e c t r o n  Scanning Image  f o r  
IV olybdenum S t r u c t u r a l  Deta i l s  and a n  I r i d i u m  X - r a y  
Line  Scan  of Sample  HP-3M -1530-2, 1250X. 

N-11674 
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An iridium point count in the molybdenum grains and in the boundaries sepa; 

rating the grains definitely indicated the presence of ir idium within the 

boundaries but none within the grains.  

Similar electron microprobe analyses were  conducted on sections of 

samples HP r3M - 153 0 - 3, HP -4M - 1900 -2, H P  - 1M - 13 00 - 5, and H P  -4M - 17 10 -4 

which also show some preferential  grain boundary diffusion of i r idium in 

molybdenum. 

at all annealing temperatures,  preferential  grain orientation o r  grain boundary 

diffusion resul ts  in the formation of highly i r regular  reaction zone interfacial 

boundaries. 

Although grain bQundary diffusion may not occur appreciably 

A s  a consequence of the above findings, efforts to precisely de te r -  
mine the reaction zone growth ra te  was de-emphasized in 'favor of direct  

measurements of the thickness of the ir idium layer af ter  annealing, Additional 

molybdenum-iridium diffusion couples were  pressure  bonded, and sectioned 

pieces, measuring approximately 1/8 inch o r  1/4 inch square,  were  metal-  

lographically polished on one side exposing both the molybdenum and the 

iridium. 

with a calibrated eye piece: the average deviation of the measured iridium 

thickness for  each of the samples  was between one and two microns,  No 

reaction zone was observed in the 'as -pressure  -bonded composites' .  After 

the specimens were vacuum annealed, they were repolished on the same  

surface and remeasured,  pr imari ly  to determine the decrease in thickness 

of the ir idium coating. Although the thickness of the reaction zone formed 

was also measured, no effort was made to increase the contrast  between 

phases by etching, making this measurement difficult to obtain. 

a r e  listed in  Table Y. 

The thickness of ir idium was measured by means of a microscope 

The resu l t s  
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TABLE V 

HEAT TREATMENT OF IRIDIUM COATED MOLYBDENUM 

Sample Reaction Zone Decrease in Iridium 
Number He at T re atment Width, Microhs Thickness, Microns 

7M-2 4 hrs. Q 1300°C 
7M-9 7 . 8  hrs. Q 1300°C 
7M- 1 16.4 hrs. Q 1300°C 

6M-3 1 hr. Q 1500°C 
7M-7 4 hrs. Q 1500°C 
6M-6 8 . 4  hrs. Q 1500°C 
6M-4 12. 1 hrs. Q 1500°C 
6M-8 14. 9 hrs. Q 1500°C 
6M-6 16. 3 hrs. Q 1500°C 

7M-8 1 hr. Q 1700°C 
7M-4 4 hrs. Q 1700°C 
7M-5 8. 3 hrs. Q 1700°C 
6M-2 12. 0 hrs. Q 1700°C 
7M-3 16.6 hrs. Q 1700°C 

7M-13 1 hr. Q 1900°C 
7M-12 2 hrs. Q 1900°C 
6M-B-3 3 hrs. Q 1900°C 
7M-10 4 hrs. Q 1900°C 
6M- 1 5 hrs. Q 1900°C 
6M-7 5 hrs. Q 1900°C 
7M-11 6 h r a .  Q 1900°C 

6. 7 
9.6 

11.7 

14. 8 
21. 6 
21. 5 
27. 7 
27. 4 
24.6 

18. 0 
27. 7 
33. 3 
43. 6 
51. 2 

20. 1 
29. 3 
26. 7 
36. 0 
35. 2 
36. 0 
46. 2 

2 . 4  
0. 2 

10. 7 

3. 0 
7. 8 

12. 8 
3. 4 

16. 1 
13. 1 

8, 7 
12. 5 
14. 5 
14. 2 
22.4 

11.4 
14. 0 
13. 2 
15. 3 
20. 4 

7. 9 
27. 2 
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The average deviation in  the measurement of the thickness of i r idiqm remain-  
ing after annealing varied between one micron and four microns,  The magnitude 

of this average deviation is  thought to depend largely upon (1) the amount of 

i r regular i ty  of the interface between the ir idium and the ir idium-rich inter - 
metallic phase, ( 2 )  the difficulty in  sharply resolving this interface 

microscopically due to a lack of contrast  between the two adjacent phases, 

and (3) the fact that surfaces  of the sheets of ir idium and molybdenum are 
neither optically flat nor perfectly parallel. Even though extreme c a r e  is 

taken to remove as li t t le mater ia l  as possible in repolishing the annealed 

specimens, the as -received iridium varied in thickness sufficiently to intro- 

duce e r r o r s  of a few microns. 

show that the reaction zone increases  in width with increasing ti’me and tem- 

perature.  

for sample 7M-9 than fo r  7M-2, although 7M-9 was held at 1300°C almost 

twice as long as 7M-2. The growth of the reaction zone is independent of 

i r regular i t ies  in thickness of the a s  -received sheet ir idium and molybdenum. 

The growth depends upon grain orientation, pr ior  thermal history, and mech- 

anism of growth. 

is related to the same factors  controlling the reaction zone growth i n  addition 

to i r regular i t ies  in the thickness of the ir idium coating. 

life expectancy of a five mil ir idium coating on molybdenum, by extrapolation 

of the data, indicates that the coating would last longer than 600 hours  at 
1700°C and for approximately 130 hours a t  1900°C. 

The samples in Table V heat .treated a t  1300’6 

However, the calculated decrease in thickness of i r idium is l e s s  

The calculated changes in thickness of the ir idium coating 

An estimate of the 

2. The Tungsten-Iridium System 

The r e sea rch  effort fo r  the tungsten-iridium system was analogous 
to that for  the molybdenum-iridium system, 

chronological sequence. 

the tungsten-iridium sys tem by using the polishing and etching techniques of 

Rapperport and Smith(7) ,  Their etchant proved to be too severe, resulting 

in preferential attack of the tungsten and tungsten-rich intermediate phase, 

A color e tch was developed, described in the experimental section, which 

color tinted the tungsten r ich  intermediate phase blue and the ir idium-rich 

phase tan to grayish tan. The resu ts  a r e  given in Table VI. The data show 

that sample HPI-W was the only pressure-bonded specimen for this series 

of experiments which was well bonded without developing a reaction zone, 

The resul ts  a r e  presented in  a 
Efforts were made to reveal  the reaction zone of 
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TABLE V I  

DIFFUSION DATA FOR THE TUNGSTEN-IRIDIUM SYSTEM 

Sample No. Temperature  "C me, h r s .  Zone,Width, )I 

HPl-W* 
HP5-W* 
HP6-W* 
HP7-W* 
HP 1 -W 1300 - 1 
HP 1 - W 1 300 -2 

HP1 -W 1530-1 
HP 1 - W 1 530 - 2 
HP 1 - W 15 30 -3 
HP 1 - W 15 3 0 -4 
HP1-W1530-5 

HP5 - W 17 10 - 1 
HP5 -W 17 10 -2 
HP5 -W 17 10 -3 
HP5-W1710-4 

HP5 - W 1900- 1 
HP6-W19OO-2 
HP6 -W 1900 -3 
HP6-W 1900-4 

HP7-W2125-3 

1295 f 10 
1295 f 10 

1538 f 10 
1538 f 10 
1538 f 10 
1538 f 10 
1538 f 10 

1705 t 10 
1705 f 10 
1705 f 10 
1705 f 10 

1905 f 10 
1905 f 10 
1905 f 10 
1905 f 10 

2127 f 10 

22.65 f 0.01 
22.65 & 0.01 

26.58 tt 0.02 
26.58 f 0.02 
26.58 f 0.02 
26.58 f 0.02 
26.58 f 0.02 

29.15 f 0.03 
29. 15 f 0.03 
29. 15 f 0.03 
29. 15 f 0.03 

31.94 f 0.03 
31.94 f 0.03 
31.94 f 0.03 
31.94 f 0.03 

34.40 f 0.02 

4.0 
16.0 

2.0 
4.0 
8 .4  

15. 8 
32.2 

2.0 
4.0 
8. 27 

16. 1 

2. 1 
4.0 
7.9 

16.3 

2.0 

0 
5.6 
5.6 
7 .  0 
4.2 
5.6 

7.0 
9. 8 

12.6 
14.0 
21. 0 

11.2 
14.0 
18. 2 
23. 8 
16.8 
19.6 
28. 0 
33.6 

16. 8 

* Sections of the pressure-bonded samples.  
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When determining reaction ra tes  for systems limited by diffusion, 
one should s t a r t  with a sample which is well bonded and which does not contain 

reaction products. 

examination of samples  were extremely t ime consuming, sections of the 

p re s  sure  -bonded samples  were annealed before the information was obtained 

that several  of the pressure-bonded samples  already contained measurable  

reaction zones. Consequently, the total reaction t ime for those samples  is 

the heat-treat t ime listed in Table V I  plus the t ime at  temperature  needed to 

develop the reaction zone of the pressure-bonded specimen. 

temperatures,  where the reaction zone develops very rapidly and/or  at  very 

long reaction t imes,  the difference between the listed t ime and the actual t ime 

needed to develop the zone width becomes negligibly small .  

Since the metallographic preparation and microscopic 

At the higher 

The data in Table VI1 a r e  for the se r i e s  of experiments in which the 

decrease in thickness of ir idium was determined a s  a function of time a t  

specific temperatures.  A s  with the molybdenum- iridium system, sections of 

pressure  -bonded samples  were  metallographically polished on one side and the 

thickness of the ir idium coating measured using a microscope with a calibrated 

eyepiece. 

observed in the samples  before they were annealed. 

very slowly, and, consequently, i r idium decreases  in thickness very slowly 

in this system. Several  attempts were  made to obtain data at  1300°C. Speci- 

mens were annealed at that temperature  for 1. 5, 5. 2, and 11. 0 hours,  

decrease in thickness of the ir idium was observed in any of the samples.  

maximum reaction zone growth was approximately six microns.  

the ir idium los s  was l e s s  than five microns in 16. 2 hours,  and the reaction 

The samples  were  not etched or  color tinted. No  reaction zone was 

The reaction zone grows 

No 
The 

A t  1500"C, 

zone width was 10.8 microns,  Since samples  annealed a t  1700°C for approx- 

imately seventy hours  lost  l e s s  than 10 microns of iridium, the life of a five- 

mil-thick coating at  this temperature  would be over 1000 hours. 

1900°C indicate that a five-mil-thick iridium coating would las t  a t  l eas t  300 

hours . 

The data a t  
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TABLE VI1 

HEAT TREATMENT O F  IRIDIUM 
COATED TUNGSTEN 

Sample Reaction Zone Decrease in Iridium 
Number Heat Treatment Width, Microns Thicknes s, Microns 

10 w - 3  1. 5 hrs Q 1300°C - 3  
10 W-6 5.2 hrs Q 1300°C - - -  
10 w - 5  11. 0 hrs Q 1300°C 6. 3 

No Change 
No Change 
No Change 

10 W-8 16.2 hrs Q 1500°C IO. 8 4 .4  

11 w - 1  9. 2 hrs Q 1700°C 17. 1 
11 w-5 11. 0 hrs Q 1700°C 19. 6 
10 w-10 17. 0 hrs Q 1700°C 19. 3 
11 w - 4  46. 0 hrs Q 1700°C 27. 5 
11 w-3 67. 5 hrs Q 1700°C 32.4 

10 w-2 
10 w-1  
10 w - 9  
10 w-7  
11 W-B-7 
11 w-2 
10 w-11 

1. 0 hrs Q 1900°C 
4. 0 hrs Q 1900°C 
5. 0 hrs Q 1900°C 
6. 0 hrs Q 1900°C 
7. 0 hrs Q 1900°C 
8.4 hrs Q 1900°C 

10.2 hrs Q 1900°C 

12. 0 
17. 6 
19. 7 
23. 3 
22. 0 
22. 2 
26. 5 

10.4 
5. 7 
1. 6 
2 .7  
7. 8 

8. 5 
7. 9 
7, 8 

10. 2 
11. 6 
14. 2 
14, 5 
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3. The Niobium-Iridium System 

In the niobium-iridium system, no reaction zone was observed during 

microscopic examination of metallographically polished, (but not etched) 

sections of the pressure-bonded composites. No effort was made to develop 

an etchant capable of delineating the reaction zone interfacial  boundaries for 

this system. Sections of the p re s su re  -bonded composites were  metallogra- 

phically polished on one side and the thickness of the ir idium coating measured 

by using a microscope. After the samples  were  annealed, they were  r e m e a s -  

ured to determine both the decrease in thickness of the ir idium and the width 

of the reaction zone formed. 

At 1300”C, no decrease in thickness of the i r idium could be measured until a 

sample was annealed for 65. 7 hours. Since an eutetic reaction occurs in this 

sys tem a t  1840 * 20”C(8), the maximum annealing temperature  was 1780°C. 

The data indicate that a five-mil-thick i r idium coating will las t  a t  l eas t  200 

hours at  this temperature.  

The data obtained are presented in Table VIII. 

4. Comparison of Systems Behavior 

The resu l t s  of the experiments  designed to determine the decrease in 
thickness of an iridium coating on the refractory metals show that the most 

rapid decrease occurs  in the molybdenum-iridium sys tem and the slowest in 

the tungsten-iridium system. 

analysis of reaction mechanisms, es t imates  of the life expectancy of an  iridium 

coating can be obtained by assuming solid -state diffusion controlled reactions. 

Extrapolation of the present data (the decrease in thickness of i r i d ium propor- 

tional to the t ime to the one-half power) indicates that a five-mil-thick iridium 

coating on molybdenum would las t  over 600 hours a t  1700°C and for approxi- 

mately 130 hours a t  1900°C. In contact with tungsten, the ir idium coating would 

las t  over 1000 hours a t  1700°C and a t  least  300 hours a t  1900°C. In contact 

with niobium, the i r idium coating should l a s t  over 700 hours  at 1700°C and a t  

least  200 hours  a t  1780°C. 

composites may be used a t  temperatures  over 2000°C. However, the ir idium- 

niobium(8)composites a r e  limited to a maximum temperature  of 1840 f 20°C 
because of a eutectic reaction at  that temperature.  

Although the data a r e  insufficient for a detailed 

Iridium coated molybdenum(9) and tungsten (10) 
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TABLE VI11 

HEAT TREATMENT O F  IRIDIUM COATED NIOBIUM 

Sample Reaction Zone Decrease in  I r idium 
Number H e  at Treatment  Width, Microns Thickness, Microns 

1 Nb-8 4 hrs .  Q 1300°C 3. 4 
1 Nb-11 30 hrs. Q 1300°C 13. 4 
1 Nb-10 65. 7 h r s .  0 1300°C 19. 3 

1 Nb-5 2 h r s .  Q 1500°C 12. 2 
1 Nb-6 4 h r s .  Q 1500°C 16. 7 
1 Nb-7 8 h r s .  Q 1500°C 17. 7 
1 Nb-13 8. 2 h r s .  Q 1500°C 19. 0 
1 Nb-12 1 2 . 2  h r s .  Q 1500°C 23. 7 
1 Nb-9 16 .4  h r s .  Q 1500°C 23. 5 

1 Nb-2 1 hr .  Q 1700°C 17. 2 
1 Nb-1 2 h r s .  Q 1700°C 24. 9 
1 Nb-3 3 h r s .  Q 1700°C 38. 5 
4 Nb-B-6 6 hrs .  Q 1700°C 51. 8 
1 Nb-4 8. 2 hrs .  Q 1700°C 56. 2 

3 Nb-1 1 hr .  Q 1780°C 27. 7 
3 Nb-2 2 hrs .  Q 1780°C 37. 8 
3 Nb-3 5 h r s .  Q 1780°C 55. 5 
3 Nb-6 6 h r s .  Q 1780°C 68. 9 

No Change 
No Change 

5. 6 

4. 2 

3. 6 
5. 9 

6. 3 
5. 6 
6. 1 

4. 0 
3. 1 
3. 5 
7. 8 
5. 5 

10. 9 
6. 9 

11. 9 
19. 3 
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It had previously been determined(5) that i r idium will oxidize in air 
flowing at  high velocities a t  approximately 0. 1 mil per  hour a t  1700°C and a t  

0. 2 mil per  hour at 1900°C. 

due to internal reactions is very much less than that due to oxidation, for all 

practical  purposes, the life of the coating will be determined by the oxidation 

rate ,  However, a t  low air flow ra t e s  and/or low partial  p re s su res  of oxygen, 

where the oxidation r a t e  may be more than a n  order  of magnitude lower, both 

oxidation and intermetall ic compound formation must be considered in deter - 
mining coating life. 

C. Mechanical Compatibility 

Since this work indicates that the ir idium loss  

The microbend-tester was described in the experimental section of 
this report  together with data obtained io evaluating the performance of this 

apparatus. Subsize specimens of the base metals,  molybdenum, tungsten, nio- 
bium, and iridium were  examined with the microbend tes te r ,  The resul ts  are 

given in Table IX. Strips of these metals,  approximately one inch long, were  
cut f rom the as -received sheet with a water -cooled abrasive wheel, The i r idium 

str ips  were Sectioned f r o m  0. 040 inch thick sheet and machined to a thickness 

of approximately 0.020 inch. The surface which was to be observed with the 

microscope during bending was metallographically polished but not etched. The 

four molybdenum specimens which were not heat treated pr ior  to testing didnot 

f racture ,  However, with all of these samples,  the applied loads reached maxi- 

mum values corresponding to strengths between 172, 000 and 201,000 psi  and 

then decreased as bending was continued. The molybdenum specimen heat treated 

at  1550°C for one hour was bent to 90 degrees  with a maximum applied load of 

four pounds (representing a maximum strength of 104, 000 psi) .  Two of the 

tungsten samples failed in shear  (delaminated) at  strengths of 379, 000 and 

340, 000 psi;  in a third sample, the load reached a maximum value of 11.25 lbs  

(corresponding to a flexural strength of 267, 000 psi)  and then decreased with 

no observable indication of either a shear  o r  tensile break. 

specimen was heated a t  1500°C for 1-1/2hou.rs under vacuum, furnace cooled, 

and tested. This sample fractured a t  a breaking strength of 182, 000 psi. 

One tungsten 
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TABLE IX 

FLEXURAL TEST RESULTS FOR THE BASE METALS 

Maximum Flexural** 
Sample* Width, B Thickness, D Applied Load, P Strength 
Number Inches Inches lbs. psi 1 0 5  C omme nt B 

Mo-1 
Mo-2 

w- 1 
w- 2 

w- 3 
w-4 

0. 1188 
0.0982 

0. 1128 
0. 1046 
0. 1014 

0. 1081 
0. 1092 
0.0981 
0. 0832 

0. 0215 
0 .02 lO 

0.0222 
0.0212 
0.0210 

0. 0216 
0. 0222 
0.0220 
0.0220 

9 112 
4 

8 1/2 
8 1 /8  

8 

17 

16 114 
11 114 
6 112 

1. 95 
1. 04 

1. 72 
1.94 

2.01 

3. 79 
3. 40 
2. 67 
I. 82 

Load dropped off. No break. 
Heat treated at 1550°C for 
1 hr. No break, 90" bend. 
Load dropped off. No break. 

1 1  I 1  I t  I t  I 1  

11 II II I t  I 1  

Failed in shear. 
t l  11 I t  

Load dropped off. No break. 
Heat treated at 1550°C for 
1 112 hrs. Cleanbreak. 

Nb-1 0. 1196 0. 0215 3 314 0. 64 Load dropped off. No break. 
Nb-2 0. 1264 0.0211 3 518 0. 61 Heat treated at 1000°C for 

1 hr. Load dropped off. 
No break. 

Ir-1 0. 1208 0. 0213 7 314 1. 33 Clean break. 
Ir-2 0. 1269 0. 0196 3 318 0. 65 Heat treated at 1700" C for 

1 hr. Loaddroppedoff. 
Sample bent to 490" 
before failure. 

*The molybdenum and tungsten samples were tested with a fixture 
having a 0. 750 inch span, L, while the remainder were tested 
with a fixture having a 0. 625 inch span. 

312 PL 
BDZ 

**Calculated using the expression 
S =  
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The as-received niobium and the sample annealed a t  1000°C for one hour did 

not f racture;  the applied loads reached maximum values corresponding to 

strengths of 64,000 and 61, 000 psi, respectively, and then decreased a s  bending 

was continued. In the i r idium sample that was not annealed, observable c racks  

initiated on the tension side of the sample at a load of 7-1 /2  lbs. 

creased to a maximum value of 7-3/4 lbs (corresponding to a strength of 

133, 000 psi)  when brit t le failure occurred with very l i t t le bending ( l e s s  than 

ten degrees).  Cracks  s tar ted on the tension edge of the annealed i r id iumsampfe  

at  a load of 1-3/4 lbs and on the compression side a t  2 lbs.  

observed when the applied load reached 3-1/4 lbs. 

maximum value of 3-3/8 lbs (corresponding to a strength of 65,000 psi)  and 

then decreased a s  the sample was bent to approximately 90 degrees.  At this 

angle, failure did occur; however, unlike the previous unannealed sample 

that virtually exploded into two par t s ,  failure was of a more ductile nature 

a s  the grains were  slowly torn apart .  

The load in -  

Slip l ines were 

The applied load reached a 

Strips,  approximately 1/8 inch wide, were  sectioned f rom the p re s su re -  
The s t r ip s  were  bonded composites with a water -cooled abrasive cut-off wheel. 

metallographically polished on a s ide  showing both the substrate metal  and the 

coating. 

reveal intermetallic compound for mation. 

num, tungsten, and niobium were  tested with the microbend tes te r  i n  both the 

' as  p re s su re  bonded' condition and after annealing. The outer ir idium surface 

was a t  maximum tension, and the outer substrate  metal  surfaces  were under a 

compressive force.  In both of the 'as 

p res su re  bonded' molybdenum substrate samples,  c racks  started a t  the outer 

ir idium edge and propagated in  an i r regular  path towards the molybdenum- 

Microscopic examinatton of the coating substrate interfaces did not 

Iridium coated samples  of molybde - 

The resul ts  a r e  given in  Table X. 

ir idium interface. 

propagated along the i r idium grain boundaries o r  ac ross  the grain, since the 

samples  were  not etched. The initial c racks  were  observed at  an  applied load 

of 8-1/2 lbs for sample 6M-B and nine lbs  for sample 7M-B. 

correspond to strengths of 1. 01 x lo'psi and 1. 04x  lo5 psi, respectively. 

No observations could be made a s  to whether the c racks  

These loads 
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Both samples,  bent to approximately 45 degrees,  failed suddenly when a crack  

reached the molybdenum-iridium interface. 

f r o m  the substrate was observed until one o r  more cracks reached the inter-  

face. Then, in a very rapid sequence, a c rack  widened, the leading crack  tip 

propagated a very short  distance along the interface and the molybdenum 

failed. 

annealed molybdenum composite behaved similarly,  No cracks were  observed 

in the reaction zone and the specimen did not delaminate. 

No delamination of the coating 

Figure 16 is a macrophotograph of sample 7M-B after testing, The 

Bending tungsten-iridium samples  produced cracks that started at  
the outer ir idium edge and propagated towards the tungsten-iridium interface. 

In the ‘as  pressure  bonded’ sample (1OW -B) and the annealed sample (1  1W -B-7), 

the p r imary  cracks went straight through the entire sample, resulting in 

destruction with very little bending. In sample 11W-B, the tungsten delami- 

nated after the p r imary  c rack  had progressed through the ir idium and most of 

the tungsten, 

the iridium-tungsten interface nor in the interaction zone of the annealed 

sample. 

In a l l  i r id ium coated tungsten samples,  no cracks developed a t  

In the niobium-iridium system, each sample behaved slightly differently 

during testing. 

of 11-1/2 lbs (strength of I .  44 x 10’psi) and then delaminated. Sample 2 Nb-B 

was bent more  than 90 degrees  with no indication of failure other than the 

formation of some very small  cracks on the outer edge of the iridium, 

the applied load was released to  remove the specimen f rom the bend tes ter ,  

the ir idium and niobium separated,  

pared with niobium and, therefore,  has a greater  tendency to spring back 

when the applied load is released. The severe bend may have weakened the 

iridium-niobium bond sufficiently 60 that differences in spring-back could 

resul t  in  delamination. 

than 90 degrees.  However, no delamination occurred. At the magnifications 

used to observe the sample during bending (30X and 70X), no cracks could be 

seen. 

examination a t  200X revealed shallow cracks along the outer ir idium edge. 

The iridium-coating of sample 1 Nb-B failed a t  an applied load 

When 

Iridium work hardens very rapidly com- 

Sample 4 NB-B was also bent through an angle greater  

After the sample was removed f rom the bend tes te r ,  microscopic 
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Figure 16. Macrophotograph of Bend Test  Sample 7W.-B. 

N-19289 

The annealed niobium-iridium sample 4 Nb-B-6) was the only sample tested in 

which cracks s tar ted during bending a t  the internal i r idium interface as well as 

at the outer ir idium edge. 

c racks  traveled towards the outer ir idium edge (towards the side of maximum 

tension). A t  an applied load of 5-1/2 lbs  (representing a strength of 58, OOOpsi), 

cracks were observed in the reaction zone; and, a t  5 -3 /4  lbs ,  the ir idium 

started to separate  f r o m  the reaction zone. The applied load reached a rnaximum 

value of 6-1/2 lbs ,  corresponding to a strength of 69,000 psi, and then decreased 

as bending continued. 

without completely delaminating and without complete destruction of either the 

coating or  the substrate metals. Examination of this sample after testing revealed 

that some of the ir idium had separated f rom the substrate.  However, the separation 

was local and did not cause complete failure. In addition, a t  the positionof the bend, 

par t  of the ir idium coating contained a c rack  which extended completely through 

the ir idium and the remainder of the ir idium was bent in a ductile manner. 

Vrhen the sample was bent further,  the internal 

The sample was bent to an angle greater  than 90 degrees 
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The unusual ductile behavior of ir idium p res su re  -bonded to niobium 
(and also to tantalum) was a l so  observed in  the previous investigation (1) . 
Sheet ir idium is fabricated by plastically deforming the metal a t  elevated 

temperatures.  At ambient temperatures ,  ir idium normally exhibits a high 

degree of work hardening which is unusual for a metal  having a face-centered 

cubic structure.  

to propagate along grain boundaries. 

an impurity which agglomerates a t  the grain boundaries. 

in contact with niobium or  tantalum seems to work harden l e s s  than iridium 

annealed under vacuum alone, 

act as get ters  for the particular impurit ies which contribute to the brit t le 

behavior of iridium. 

a r e sea rch  program leading to the development of a ductile ir idium at  ambient 

temperatures . 

Cracks which appear after deformation have been observed 

This behavior is usually indicative of 
Iridium annealed 

One may speculate that niobium and tantalum 

It would be of practical  and theoretical va lue  to pursue 

A comparison of the mechanical behavior of the composites with that 

of the substrate metals indicates that p re s su re  -bonded molybdenum composites 

have a flexural strength 20 percent below that of the 'as-received '  sheet 

molybdenum and 40 percent higher than annealed sheet molybdenum. 

annealed composite, containing a 26. 7 mil thick reaction zone, had a flexural 

strength 20 percent lower than that of annealed sheet molybdenum, The 'as-  

received' and the annealed molybdenum were  plastically deformed (through a 

bend angle of 90 degrees).  The composites developed cracks on the side of 

maximum tension (the outer i r idium surface)  and failed in a brit t le manner 

at a bend angle of approximately 45 degrees.  

as brit t le as the tungsten sheet samples,  and the breaking strengths were 

lower than those of the base metal. Niobium can be extensively deformed 

plastically. 

having flexural strengths greater  than that of the substrate metal. Iridium- 

coated refractory metals can be deformed plastically i f  the uncoated substrate  

metal  deforms plastically. In addition, a well-banded composite will not 

delaminate easily during deformation, even when a substantial reaction zone 

is present between the coating and the substrate metal. 

The 

The tungsten composites were 

The niobium composites were  also the most ductile composites 

\ 
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V. CONCLUSIONS AND RECOMMENDATIONS 

Iridium is a very promising oxidation-resistant coating for the r e f r ac -  
The studies showed that ir idium can be p re s su re  bonded to tory metals. 

molybdenum, tungsten, niobium, and tantalum. Intricately shaped objects of 

molybdenum and tungsten can be coated with coherent and adherent ir idium of 

any desired thickness by electrochemical means. Tantalum and niobium are 
chemically too reactive with the molten electrolyte to be consistently coated 

with iridium. 

consisted of a nickel s t r ike on the substrate metals followed by an i r idium, 

overlay, Roll bonding would be an ideal way of cladding large sheets of the 

refractory metals;  however, additional effort will be needed to determine the 

best processing parameters ,  Although plasma spraying was not attempted 

during this investigation, i t  may be an alternate method of applying the coating 

to both sheet and intricately shaped items. 

However, a dual coating was developed for  these metals which 

At elevated temperatures ,  ir idium reacts  with the refractory metals 

to form intermetall ic compounds which consume iridium and which may fo rm 

a continuous network, constituting a brit t le reaction zone between the coating 

and the substrate! 

coating on molybdenum, tungsten, and niobium due to intermetall ic compound 

formations was determined. F r o m  these data, the life expectancy of the coating 

can be estimated. Extrapolation of the data, assuming solid-state diffusion 

controlled reactions, shows that a five -mil-thick i r idium coating will l as t  

almost indefinitely on tungsten, for a t  least  700 hours  on niobium, and for at 
least  600 hours on molybdenum at  1700°C. Similarly, the same coating will 

l a s t  at least  300 hours,  and 130 hours, respectively, on tungsten and molyyb- 

denum a t  1900°C. 

least  200 hours a t  1780°C. 

very much l e s s  than that due to oxidation in air a t  ambient p re s su re  when the 

air is flowing at  high velocities. 

the life of the coating will be determined by its oxidation rate. At low air flow 

ra tes  and/or partial  p re s su res  of oxygen, the oxidation ra te  may be more than 

an order of magnitude lower than under the severe conditions, Under these 

circumstances both oxidation and intermetallic compound formation must be 

The amount of the decrease in  thickness of an iridium 

In contact with niobium, the ir idium coating should las t  a t  

The loss  of ir idium due to internal reactions is 

Consequently, for all practical  purposes, 
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considered in determining the coating life. 

under which the i r idium coated refractory metals will be used a r e  recom-  

mended to complete the evaluation test. 

Tes ts  that simulate the conditions 

The evaluation of the mechanical behavior of the composite mater ia ls  
has  shown that: (1) well  bonded composites did not delaminate easily during 

deformation, even when a substantially thick reaction zone was present between 

the coating and the substrate metal;  and (2) cracks  initiate on the s ide of 

maximum tension (the outer ir idium surface)  during bending and propagate 

towards the coating-substrate interface. 

bri t t le a s  plain tungsten sheet samples,  and niobium bend composites were 

ductile. Molybdenum-based composites failed in a brit t le manner at  bend 

angles of approximately 45 degrees ,  whereas  annealed molybdenum was plas - 
tically deformed through a bend angle of 90 degrees.  

Tungsten bend composites were  as 

The resu l t s  of this investigation and of the previous one(')showed that 

the mechanical behavior of ir idium v a r i e d  depending upon pr ior  thermal  and 

environmental history. 

hardening, a behavior which is unusual for a metal  having a face-centered 

cubic s t ructure .  The brit t le behavior of ir idium was a l so  observed during 

this investigation. 

the ir idium coatings which were  electrodeposited on copper were  v e r y  ductile 

and that i r i d ium rol l  bonded o r  p re s su re  bonded to tantalum o r  niobium also 

deformed in a ductile manner.  

r e sea rch  p rogram to determine the effect of specific impurit ies on the defor- 

mation character is t ics  of iridium. 

value to pursue a r e sea rch  program which would (1 )  give a c lear  understanding 

of the deformation character is t ics  of ir idium, and (2) lead to the development 

of a ductile i r idium a t  ambient temperatures .  

Sheet ir idium normally exhibits a high degree of work 

However, of greater  significance was the fact that many of 

This evidence emphasizes  the need for a 

It would be of practical  and theoretical 
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